
 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Johny’s Software Lab

My program was running fast six
months ago. What happened?
Why do programs tend to get slower over time?

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

About me
● Ivica Bogosavljevic - application performance specialist
● Professional focus is application performance improvement - techniques used

to make your C/C++ program run faster:
○ Better algorithms,
○ Better exploiting the underlying hardware
○ Better usage of the standard library
○ Better usage programming language
○ Better usage of the operating system.

● Work as a performance consultant
○ Help with debugging performance issues in software
○ Trainings for teams developing performance sensitive software

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Introduction
● As software develops, more features are added to it, it seems to get slower
● Reasons:

○ Architectural issues
○ Algorithmic issues
○ Memory allocation
○ Compiler optimizations
○ Hardware issues

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Johny’s Software Lab

Architectural Issues

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Architectural Issues
● Architectural issues:

○ API design
○ Internal component design
○ How different components work together to achieve a goal

● They can require a lot of rewrite to improve
● Careful design is important to avoid performance issues related to

architecture
● For performance-sensitive systems, performance considerations need to be

taken into account from day 1

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

“Chatty” components
● Software consists of logical components or modules
● Components exchange information among themselves to get the work done
● API design for performance

○ Minimize the number of times component A has to communicate with component B
○ Minimize the size of the message exchanged between A and B

● Components that talk a lot are often called “chatty”
○ Processing data one by one vs processing data in bulks

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

“Chatty” components
● “Chattiness” kills performance for several reasons:

○ Overhead of function calls
○ Inhibits compiler optimizations
○ Overhead of critical section protection
○ Instruction cache misses

● The price becomes much higher if components need to be moved to separate
processes or separate computers

● Additional problems:
○ A component can “organize” its data better if the amount of data is known in advance

● Fixing later difficult
○ Large rewrite needed

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

“Chatty” components - malloc example
● Memory allocation functions

○ void* malloc(int size) - allocates one block of memory of a given size
○ free(void* p) - releases one block of memory of a given size

● A program that needs to allocate 1 million objects
○ 1 million calls to malloc

● Alternative: malloc that can allocate variable number of blocks
○ block_ptr* malloc(int size, int count)
○ free(block_ptr*)

● Performance benefits:
○ The allocator can organize the memory better if it knows it will give out 1 M blocks
○ Decreased overhead of function call
○ Decreased overhead of multithreading synchronization
○ Improved instruction cache use (more on this a bit later)

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Data Copying - Data Conversions
● Data copying and data conversions

○ They tend to appear more and more as the complexity of the system grows

● Neither data copying nor data conversions do any useful work
○ Should be avoided whenever possible

● Example unnecessary data copying
○ Components allocating memory for inputs or outputs

● Can be avoided with clever design
○ The data format should be agreed before either of components is designed
○ If using external libraries or components, use the data format expected by the external

libraries

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Contention
● Contention - getting stuck in line and waiting for something to happen

○ Resource contention - waiting on a resource

● Component contention
○ The main reason for contention - waiting to enter critical section

● High utilization -> waiting times explode
○ Mathematical interpretation: Kingman’s formula

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Contention

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Contention - example logger
● Logger - shared component - writes logging data to a file
● Critical section protected by a mutex
● Large utilization -> many components are waiting to put data in logger

○ System becomes much slower
○ Domino effect: components that are waiting for components that are waiting for components

● The effect described by Kingman’s formula seen everywhere
○ Overloaded server
○ Overloaded database
○ Overloaded bank teller
○ Overloaded highway (Autobahn)

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Johny’s Software Lab

Algorithmic Issues

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Algorithmic Issues
● Problem with data set size
● Small data set -> many loops with different complexities in performance

profile
○ O(n), O(n log n), O(n2)

● Large data set -> only loops with the highest data complexity in performance
profile

○ The most complex loop in the program eats up all the runtime

● Programs with complexity larger than O(n log n) scale badly
○ The program runtime doesn’t grow linearly to the data set size

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Johny’s Software Lab

Memory Allocation

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Memory Allocation

● System allocator is a shared resource
● New code (or component) that uses the system allocator a lot

○ Increases data fragmentation
○ Decreases data cache hit rate

● Result -> All components relying heavily on the system allocator get
slower

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Memory Allocation

● Code that uses system allocator a lot:
○ All types of pointers
○ Binary tree based, linked list based and some hash maps based data structures

● Mitigation strategies:
○ More efficient system allocators
○ Per-component allocators

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations
● Compilers optimizations are fragile

○ Compilers rely on pattern matching and heuristics
■ Vectorization and inlining

○ A code that is well optimized might get deoptimized with one additional line
○ Change of compiler or compiler version can also break optimizations

● No generic solution
○ However, writing simple easily maintainable code helps

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Johny’s Software Lab

Hardware issues

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Hardware Issues
● Larger program or larger data set -> less hardware friendly

○ More instruction cache misses
○ More data cache misses
○ Failure to use CPU’s vectorization units

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

More code -> more instruction cache misses
● Instruction cache speeds up access to instructions

○ Instruction in the instruction cache -> fast access
○ Instruction not in the instruction cache -> needs to be fetches from the main memory -> slow

access
○ Instruction not accessed for a long time -> evicted from the cache

● Bigger program -> more instruction cache misses
● Some programs suffer more from this issue

○ Programs that quickly move from one function to another

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

More code -> more instruction cache misses
● Mitigations:

○ BOLT
○ Profile-guided optimizations
○ Link-time optimizations

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Larger workload -> more data cache misses
● Data cache - small memory to speed up access to commonly used dat

○ Data in the data cache -> fast access
○ Data not in the data cache -> needs to be fetched from the main memory -> slow access

● Problem with random access data structures
○ Trees, hash maps, linked lists (not arrays)

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Larger workload -> more data cache misses
● Lookup in small data structure faster than lookup in a large one

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Larger workload -> more data cache misses
● No general solution
● Mitigations:

○ Open addressing hash maps
○ N-ary trees
○ Binary trees with a good memory layout (TODO Layout)

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Larger classes -> more data cache misses
● Processing large classes is slower

○ Data fetched from memory to the data cache in blocks
○ Large classes bring unused data to the data cache

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Larger classes -> more data cache misses
● Experiment

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Larger classes -> more data cache misses
● Mitigations

○ Decompose large classes into smaller classes
○ Entity-Component-System

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

The End
● Questions?
● Interested in C/C++ software performance? Subscribe:

○ Twitter: @johnysswlab
○ Linkedin: https://www.linkedin.com/company/johnysswlab/

● Need help with performance in your program? Contact us!
○ ivica@johnysswlab.com
○ https://johnysswlab.com/consulting/

https://www.linkedin.com/company/johnysswlab/
mailto:ivica@johnysswlab.com
https://johnysswlab.com/consulting/

